Constructing a Unitary Hessenberg Matrix from Spectral Data

نویسندگان

  • Gregory Ammar
  • William Gragg
  • Lothar Reichel
  • Peter Henrici
چکیده

We consider the numerical construction of a unitary Hessenberg matrix from spectral data using an inverse QR algorithm. Any unitary upper Hessenberg matrix H with nonnegative subdiagonal elements can be represented by 2n ? 1 real parameters. This representation, which we refer to as the Schur parameterization of H; facilitates the development of eecient algorithms for this class of matrices. We show that a unitary upper Hessenberg matrix H with positive subdiagonal elements is determined by its eigenvalues and the eigenvalues of a rank-one unitary perturbation of H: The eigenvalues of the perturbation strictly interlace the eigenvalues of H on the unit circle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

QR-type iterations for eigenvalue computations based on factorizations of unitary matrices in rotations

The QR-algorithm is a renowned method for computing all eigenvalues of an arbitrary matrix. A preliminary unitary similarity transformation to Hessenberg form is indispensible for keeping the computational complexity of the QRalgorithm applied on the resulting Hessenberg matrix under control. The unitary factor Q in the QR-factorization of the Hessenberg matrix H = QR is composed of n − 1 rotat...

متن کامل

Minimal representations of unitary operators and orthogonal polynomials on the unit circle ∗

In this paper we prove that the simplest band representations of unitary operators on a Hilbert space are five-diagonal. Orthogonal polynomials on the unit circle play an essential role in the development of this result, and also provide a parametrization of such five-diagonal representations which shows specially simple and interesting decomposition and factorization properties. As an applicat...

متن کامل

Spectral methods for orthogonal rational functions

An operator theoretic approach to orthogonal rational functions on the unit circle with poles in its exterior is presented in this paper. This approach is based on the identification of a suitable matrix representation of the multiplication operator associated with the corresponding orthogonality measure. Two different alternatives are discussed, depending whether we use for the matrix represen...

متن کامل

Short recurrences for computing extended Krylov bases for Hermitian and unitary matrices

It is well known that the projection of a matrix A onto a Krylov subspace span { h, Ah, Ah, . . . , Ak−1h } results in a matrix of Hessenberg form. We show that the projection of the same matrix A onto an extended Krylov subspace, which is of the form span { A−krh, . . . , A−2h, A−1h,h, Ah, Ah . . . , A`h } , is a matrix of so-called extended Hessenberg form which can be characterized uniquely ...

متن کامل

Eigenvalue computation for unitary rank structured matrices

In this paper we describe how to compute the eigenvalues of a unitary rank structured matrix in two steps. First we perform a reduction of the given matrix into Hessenberg form, next we compute the eigenvalues of this resulting Hessenberg matrix via an implicit QR-algorithm. Along the way, we explainhow the knowledge of a certain ‘shift’ correction term to the structure can be used to speed up ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993